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Phase transitions in lattice fluids 11. Extended interactions 
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Abstract. A study is made of a lattice Bud with interactions up to ninth neighbours. A 
simple approximation is used for the entropy and the internal energy is constructed in terms 
of a small number of basic configurations. The minimization of the free energy is performed 
using a numerical procedure described in a previous publication. The tail of the intermolecu- 
lar potential is sufficiently extended to  produce a full phase diagram showing both gas-liquid 
and liquid-solid transitions. The liquid-solid transition is second order, because of the 
particular lattice used, but otherwise the phase diagram is satisfactory. A direct application 
to monolayers is presented and a discussion of a posbible biological application is given. 
The transition to  a continuum model and methods of achieking more quantitatively realistic 
results are discussed. 

1. Introduction 

The effect of introducing short-range attractive interactions in hard core lattice fluids 
has been described in a previous publication (Kaye and Burley 1974, to be referred to as 
I), where molecules were defined by the exclusion of first neighbours, and extended 
Kikuchi calculations used to include interactions on second and third neighbours. 
Although these interactions can produce a transition within the homogeneous disordered 
state, the ordering transition due to the hard core in all cases considered occurs at lower 
densities producing an overlap in which the ordered state is more stable. Therefore as 
in other calculations for this and similar models (Runnels et a1 1970, 1971) there is only 
one transition, and no intermediate liquid-like phase. 

The overlap between the two transitions had in fact been observed by Kikuchi 
(1951), who studied the first neighbour excluded problem on the triangular lattice 
using a single triangle as the primary subfigure. Although this subfigure can define 
the exclusion of first neighbours, it is not large enough to take directly into account any 
more distant interactions, and to include these, Kikuchi proceeded as follows. The 
notation here is the same as that of paper I. Using 
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as the relevant fraction variables, the probabilities of the configurations 

with energies c1 and c2 respectively, can be constructed approximately as follows : 

by a similar construction. These probabilities can then be used in an energy expression 
and a calculation similar to that of paper I, Q 3, performed. 

In cases where the energy can be expressed directly in terms of the primary fraction 
variables, the expression is a linear one, and on differentiation for equilibrium only 
constants are added to the basic equations to he solved. However, when the energy is 
expressed as above this is not so, and the resulting equations become very complicated. 
In Kikuchi’s case, the use of a triangle as the primary subfigure leads eventually to an 
ordered calculation with only one equation, and this can be solved even with the non- 
linear energy factor. With larger primary subfigures however such an energy formulation 
would preclude an analytical solution. 

Kikuchi found that both disordered and ordered transitions were produced by his 
model, but that in general the two overlapped, as in the case mentioned previously. 
However, by adopting a potential with cZ/cl = 2, ie with increasing interaction away 
from the core, Kikuchi obtained a separation of the two transitions and a phase diagram 
with three parts. 

In lattice terms, the approach to a continuum involves progressive reduction in the 
mesh spacing, or an effective increase in the number of sites covered by each molecule. 
An ordered state would then be specified by the preferential occupation of one of an 
increasing number of sublattices. Kikuchi attributed the necessity for his ‘unphysical’ 
potential to the paucity of sublattices in the rather simple model. He argued that an 
overemphasis of the single energetic configuration tending to destroy the long-range 
order, that with the energy cZ above, is equivalent to an increase in the number of 
sublattices, and an approach to the continuum. 

More recently, Orban et a1 (1968) have considered a square lattice model where the 
molecules are defined by the exclusion of first, second and third neighbours, with 
attractive interactions at fourth and fdth neighbours. The molecules here are five times 
the size of the lattice unit cell, and a Kikuchi calculation for the same model would 
involve five sublattices. Evidently this case goes some way towards fulfilling Kikuchi’s 
requirements for a finer mesh, and more sublattices, and although these matrix calcula- 
tions were limited to one rather narrow strip of 10 sites, they strongly indicated the 
appearance of a stable liquid phase without the need to specify an unphysical potential. 



Phase transitions in lattice fluids 11 1305 

An alternative way to stabilize a liquid phase would be to return to the idea of Van 
der Waals and introduce an extended attractive tail into the potential, thereby increasing 
the internal energy of intermediate density disordered configurations so that their 
total free energy is lower than that of ordered ones at the same density. As already 
noted, the addition of extended interactions in a Kikuchi calculation by using relations 
such as equation (1) greatly complicates the equations to be solved and precludes an 
analytic solution with any but the simplest subfigures. However these interactions can 
be introduced with little additional difficulty into a numerical calculation of the type 
described in paper I (COFE). Using this method it is possible therefore to combine a 
study of the tail, already shown to be associated with a disordered condensation (Van 
Kampen 1964), with a Kikuchi calculation which contains enough geometric informa- 
tion to describe the hard core packing transition. 

In addition to the effect of extended finite interactions described above, a result of 
Lebowitz and Penrose (1966) makes it possible to consider the effect of a Kac-Baker 
potential on the phase diagram of lattice fluids. This has recently been studied by Hall 
and Stell (1973), who used the collected data on several hard core lattice fluids to show 
that a phase diagram with two separate first-order transitions can be produced by the 
addition of such an infinitely weak and long-ranged potential. Their results are com- 
pared in $ 4 with those of the rather different potential used in the following calculation. 

2. A square lattice model with extended interactions 

The molecular hard core is defined by first neighbour exclusion on the square lattice, 
and interactions up to the ninth neighbours are included in the attractive tail of the 
potential. A primary square subfigure was used in the Kikuchi calculation, and therefore 
the fraction variables and the relations between them are identical to those in $ 3  of 
paper I. 

However, since the present calculation must be a numerical one using the COFE 
procedure, the normalization is used to eliminate w1 from the spanning variable set so 
that all the fraction variables can be expressed in terms of the four independent variables 
w, to w5, as follows, 

w 1 =  1-2w2-2w3-w4-w5 

~1 = 1 -w, -w3 - w4-wS 

Y 2  = w 2 + w 4  

Y 3  = w3+ws  

x1 = 1-w,-w, 

x3 = 1-w3-ws 

x4 = w 3 + w 5 .  

X2 = W , + W 4  

The internal energy must now be formulated, with interactions extending to the ninth 
neighbour, and located as in figure 1 (for the complete ordered calculation there are of 
course two labellings for each extended configuration), and with first neighbours ex- 
cluded, the probabilities of the remaining eight attractive configurations can be written 
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Figure 1. Location of interactions. 

approximately in terms of the fraction variables based on the square as follows: 

The interaction could be extended indefinitely in this way, but since the forces between 
real molecules become negligible after a few molecular diameters, the range in this first 
calculation is restricted to the two extra interactive ‘rings’ represented by the above 
configurations. The energy associated with each neighbour is expressed relative to the 
close packing interaction c 2 t  by the relation 

ci = c2ri i = 3, ..., 9 (4) 

t In paper I, 5 3, the close packing interaction was labelled c, .  Here it is labelled f2 to fit the scheme in which the 
subscript refers to the neighbour. 
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in which set the ri determine the shape of the interaction potential. The internal energy 
of the lattice is then 

Since the COFE procedure of paper I was formulated to deal with the linear energy 
expressions of a normal Kikuchi calculation, the procedure is slightly modified in this 
case. Equation ( 5 )  is used to incorporate explicitly the energy, its derivatives with 
respect to the independent variables (needed in the search for equilibrium), and its 
derivatives with respect to the density (needed to formulate the the pressure). 

With a fixed temperature factor t2P and a potential shape specified by the set ri, 
the numerical procedure now provides the thermodynamic functions of the model as a 
function of the density. The onset of the disordered state as the density is lowered is 
marked by the disappearance of the asymmetry between equivalent pairs of fraction 
variables for the two sublattices. In practice once this transition was located, the 
disordered state was mapped out by using a separate and smaller calculation for an 
unlabelled lattice. 

3. Results 

Provided the attractive tail is not made extremely weak in comparison to the close 
packing interaction c2, the effect of the added interactions on the disordered state is to 
produce a Van der Waals type of condensation at relatively low densities. This is 
illustrated in figure 2, which shows isotherms for potentials defined by three different 
sets ri. Both ordered and disordered states are displayed, and as can be seen, the 
ordering transition is separate in all cases from the vapour-liquid transition, producing 
a stable liquid phase. Curves 2 and 3 of figure 2 refer to different temperatures for the 
same potential and correspond in a qualitative sense to the calculations of Kikuchi 
referred to in the introduction, in that the interaction increases at first with greater 
separation. The effect of using such a potential is to make the transition to an ordered 
state more difficult at lower temperatures, so that it occurs at higher densities and 
pressures, ie it requires greater mechanical compression. This was not observed by 
Kikuchi, who considered only one isotherm, and as shown in figure 2, it leads to a crossing 
of the two isotherms at different temperatures. 

To avoid this, a potential must be used in which the interactions of the tail are always 
less than that of the close packing interaction, and curves 4 and 5 of figure 2 refer to 
such a potential. The lower temperature transition is now at lower pressure and the 
isotherms do not cross, although the lower temperature transition is still at rather higher 
density, indicating that the attractive tail is still rather too strong. 

Accordingly a rather weaker attractive tail was chosen for the extensive calculations 
at different temperatures needed to elucidate the full diagram of state. The result of 
this calculation is shown in figures 3 and 4, along with the parameters ri defining the 
potential. The extended interaction model shows all the broad characteristics of a real 
system, with gas, liquid and solid regions as indicated by the phase diagram of figure 5 
and the low pressure detail of figure 6. Like that of real fluids the liquid vapour co- 
existence curve is asymmetrical (figure 6).  The critical point is located at q2 = 0.143, 
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0 0.1 0.2 03 0.4 0 5 
P 

Figure 2. Square lattice, effect of extended interaction potentialst on the Van der Waals and 
order-disorder transitions. 

Curve qz r3 r4 r s  r6 r7 rs  r9 

I $  0.707 3.0 2.8 2.6 2.4 2.2 2.0 1.8 

2 0.25 1.4 1.2 1.0 0.8 0.6 0.4 0.2 
3 0.1 1.4 1.2 1.0 0.8 0.6 0.4 0.2 

~ 

4 0.15 0.9 0.8 0.7 0.6 0.5 0.4 0.3 
5 0.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

t These are based on q z  and defined in equation (4). q2 = exp(c,p). 
$ For curve 1, the order-disorder transition is at Pap  L 1.9. 

pc = 0.1 and Pap, = 0.025, and the triple point is at qz = 0.0945&2, p, = 0.28, 
Pap, = 0.01 1. As can be seen from figures 3 and 4, the melting transition is second order 
at all temperatures, unlike that of a real fluid. 

4. Discussion 

It has been shown that the overlap of disordered and ordering transitions characteristic 
of short-range interactions in lattice fluids may be removed by including extended range 
interactions more like the tail of the real intermolecular potential. In doing this the 
ability to include non-linear factors in a numerical (COFE) calculation has been crucial. 
Except for the second-order liquid-solid transition, the p V  plane of the resulting phase 
diagram is qualitatively the same as that of a simple inert element. 
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Figure 3. Pressure diagram for the extended interaction model; separate Van der Waals 
and ordering transitions. Curve 1, q2 = 1.0; curve 2, q2  = 0.5; curve 3, q 2  = 0.15; curve 4, 
q 2  = 0.1; curve 5, q2 = 0.08. Extended interactions defined by:  rj  = 0.75, r4 = 0.65, 
r5 = 0.55, r6 = 0.45, r ,  = 0.4, r8 = 0.35, r9 = 0.3. 

5 

Figure 4. Low pressure detail of figure 3. A, critical point ; B, triple point. 
1, ~2 = 0.15 6, ~2 = 0.1 
2, q 2  = 0,143 (Tcritical) 
3, ~2 = 0.14 

7, q 2  = 0.096 
8, q 2  = 0.0945 (Ttriple) 

4, ~2 = 0.13 9, q 2  = 0.09 
5 ,  ~2 0.115 10, q 2  = Q08. 
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I I I 

P 

Figure 5. Phase diagram for the extended interaction model. Curve 1, disordered isotherm, 
infinite temperature; curve 2 ordered isotherm infinite temperature; 3, triple point. 

8 cp 002 I I 
Gas r 

Gas -solid 

Solid 1 
0 01 02 0.3 0.4 0 5  

P 

Figure 6. Low pressure detail of figure 5 .  Curve 1, disordered isotherm, infinite temperature; 
curve 2, disordered isotherm, critical temperature ; curve 3, liquid-vapour coexistence curve ; 
point 4, critical point; point 5 ,  triple point (for locations of points 4 and 5 see text). 

However when a Kac-Baker potential is added to the hard core of the same model 
(Hall and Stell 1973), the phase diagram has a first-order solid-fluid transition and no 
liquid-gas transition. This result is in fact very similar to that produced by a single 
attraction on second neighbours, where the fluid-solid transition rapidly becomes 
first order, with the ordered state stable at low densities (cf paper I, Runnels et al 1970t). 
The liquid-gas transition lacking in this and the Kac-Baker case can be produced, in a 
purely disordered calculation, by the addition of a third neighbour attraction (cf paper I), 

t In both these cases the infinite temperature solid-fluid transition is found to be second order with finite 
compressibility, and therefore a critical temperature exists at which the order of the transition changes. In 
the calculations of Hall and Stell the infinite temperature transition is assumed to have an infinite compressi- 
bility and there is therefore no such critical temperature. 
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but even in this case it is cancelled out by an overlapping, more stable, ordered state. 
The separation achieved with the present model depends on the relative strengths of the 
interactions in the extended tail. This is essentially because the first neighbour exclusion 
generates only two sublattices. Half the possible interactions of any molecule are 
therefore with others on the same sublattice, tending to stabilize ordered configurations, 
and compared to models nearer the continuum there are relatively few interactions 
favouring disordered configurations. If the tail interactions are made strong enough to 
produce a first-order transition to the solid, the liquid state disappears. The second- 
order liquid-solid transition is therefore a consequence of adjusting the potential to 
preserve the separate liquid state, and the lack of a liquid-gas transition in the Kac-Baker 
case probably also relates to this dependence of the liquid-gas transition on potential 
shape. 

This interpretation implies that the separation of transitions will be easier in models 
with larger hard cores, where there are more sublattices and a smaller proportion of 
interactions between molecules on the same sublattice. When the exclusions on the 
square lattice are extended to third neighbours, there are five sublattices, and the model 
does have two separate first-order transitions when an attractive potential is added 
(Hall and Stell 1973, Orban et al 1968). 

In view of the above, it is interesting to note Hall and Stell’s suggestions that the 
separate liquid-gas transition is related to the hard core shape, since it is this which 
determines the actual details of the sublattice structure. Bearing in mind also that even 
infinite temperature transitions become first order as more neighbours are exc!uded 
(Bellemans and Nigam 1967, Orban and Bellemans 1968), it is clear that the results will 
be improved as lattice models closer to the continuum are considered. 

Although the averaging inherent in the present description of the distant interactions 
is probably an adequate description of the smeared out distant potential, the discrete 
nature of the interactions in a lattice model presents more problems for the closer ranges. 
Here the smooth interaction field is not at all well represented by the geometlical 
specificity of close neighbours, and one of the dangers in a lattice energy formulation is 
that by overemphasizing one particular interaction, artificial slots in the interaction field 
can be created which may stabilize ordered configurations not defined by any geometrical 
packing of the hard core, and which are completely unphysical. This is unlikely to 
happen if the close packing interaction is always the strongest, as in these calculations. 
Some effects of short-range interactions on the liquid-vapour coexistence curve will be 
studied in a subsequent publication. A possible improvement requires a closer approach 
to a smooth interaction potential, and therefore, as in the case of the ordering transition, 
this will come about as more neighbours are excluded and the mesh size of the lattice 
effectively reduced (cf Hoover et a1 1964). It should be emphasized here that unlike 
cell theories, the present lattice fluids are discrete analogues of the continuum, which 
they are capable of approaching by a progressive reduction of mesh size. 

In allowing extended range and non-linear energy factors to be introduced, the 
COFE procedure overcomes a large obstacle to the complete but approximate modelling 
of systems more complex than the much studied simple lattice gas or hard core fluid. 
Any model which can be defined within the span of a given primary subfigure can 
probably now be tackled in a numerical Kikuchi calculation. Such calculations will at 
first be simple approximations giving only qualitative results (in a subsequent paper the 
application to dimers and trimers will be described), but since most systems of interest 
are complex, their usefulness seems assured (cf the application of mean field approxima- 
tions to a wide variety of problems, Brout 1968). 
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In a possible direct application of the present model, the existence is noted of a 
physical system whose phase diagram closely resembles that of figure 5, with a second- 
order transition to the solid phase. The system is that of insoluble monomolecular 
layers of long chain paraffin molecules with hydrophilic head groups on an aqueous 
substrate. Typical examples, on which much experimental work has been done, are the 
long chain fatty acids, stearic acid, myristic acid, etc. In these layers the hydrophobic 
chains are known to be approximately perpendicular to, and therefore most distant from, 
the aqueous surface. A general phase diagram for such monolayers, taken from Harkins 
(1943) is shown in figure 7, which can be immediately compared with that of figure 5. 
Further discussion of these monolayer phenomena can be found in a review by Gaines 
(1966). 

Area per molecule (8*) 
Figure 7. General phase diagram for monolayers (from Harkins 1943). S, solid phase; I, 
‘intermediate liquid’; L, ‘liquid expanded’ phase; G, gas. 

In this field of study one of the major problems has always been the interpretation of 
the second-order transition labelled C in figure 7. Because of the high compressibility 
on the high density (low area per molecule) side of the transition, the shoulder region 
labelled I in the figure has been called an intermediate liquid, the term solid being 
reserved for the high density part of the diagram where the isotherms finally steepen. 

The classical interpretation of this transition is that of Langmuir (1933) who suggested 
that at C the disorder characteristic of the liquid disappears and close packed islands 
of solid monolayer begin to appear, and that the solid is eventually reached when these 
islands coalesce to produce a uniform solid phase. 

Kirkwood (1943) has offered the alternative interpretation that the transition is 
essentially orientational, associated with the hindered rotation of monolayer molecules 
whose cross section is in fact asymmetrical. 

The similarity of Langmuir’s phenomenological interpretation and that for the order- 
disorder transition of hard molecules (cf Gaunt and Fisher 1965) is striking. However, 
if a monolayer model is proposed essentially as a planar system of parallel interacting 
cylinders, their behaviour would be expected to be the same as that of a system of 
interacting continuum discs with a first-order liquid-solid transition, whereas in the 
monolayer system it is of second order. 

It has already been noted that a transition is weakened in a system which is more 
loosely packed (eg the square lattice). This is also true of ‘network melting’ described 
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by Ubbelohde (1965) in which the packing of molecules is restricted by directional bonds 
between molecules. In a sense this is equivalent to the case of molecules with an asym- 
metrical or ‘rough’ cross section, which also limits the relative orientations of closely 
packed molecules. 

It seems probable therefore that Langmuir’s interpretation is essentially correct, 
but that the first-order transition which we would expect of smooth cylindrical molecules 
is weakened by the asymmetrical or rough cross section of real monolayer molecules, 
essentially as suggested by Kirkwood. The relatively high compressibility of the ‘inter- 
mediate liquid’ is simply a correlate of the weak nature of the transition, representing 
the slow break up of the crystal as melting is approached, and need not be distinguished 
as a separate phase. 

Lattice models such as those described in this chapter necessarily describe ‘rough’ 
molecules and it is possible that a continuation of such studies will represent an 
important theoretical contribution to the understanding of monolayers. 

And since the basic structural unit of biological membranes is known to be a planar 
double layer, each sheet of which is similar to the monolayers described above, and with 
experimental evidence (cf Engelman 1970) of an ordering transition in real membranes 
at a temperature close to the ‘in vivo’ temperature of the organism concerned, it is also 
possible that lattice studies such as those of this paper will prove useful in biophysical 
work. 
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